

JETI Technische Instrumente GmbH

Color measurement of light sources

Steffen Görlich

JETI Technische Instrumente GmbH Jena

JETI Technische Instrumente GmbH

Outline

- 1. Introduction
- 2. Light measuring quantities
- 3. Measuring techniques
- 4. Spot meters on the market
- 5. Measuring uncertainty
- 6. Measurement examples
- 7. Conclusions

JETI Technische Instrumente GmbH

founded in 1998

 Development, production and sales of measuring instruments and components of spectroscopy

• Employees: 14

• Location: Jena/ Thuringia/ Germany

URL: www.jeti.com

1. Introduction

Product range

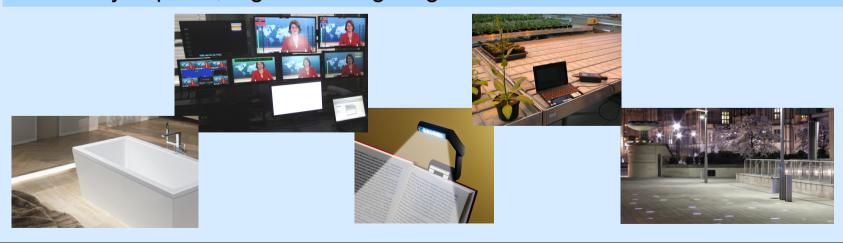
Spectroradiometry

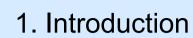
- Precise, easy to handle and economic
- Currently fourth generation of instruments (specbos 1100, 1200, 1201, 1211)

Read out electronics for array detectors

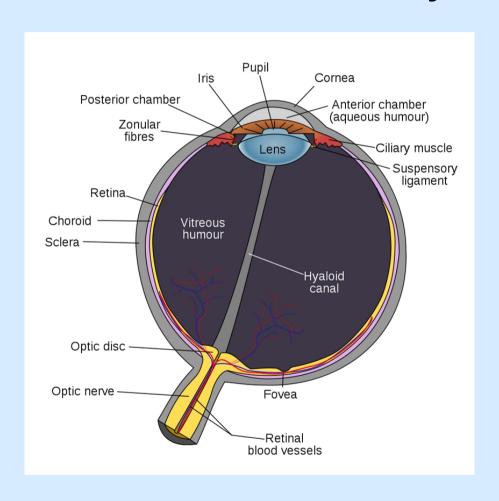
- Versions for approx.
 50 different array detectors
- Modular concept
- Low noise/ high dynamics
- Precise TE cooling

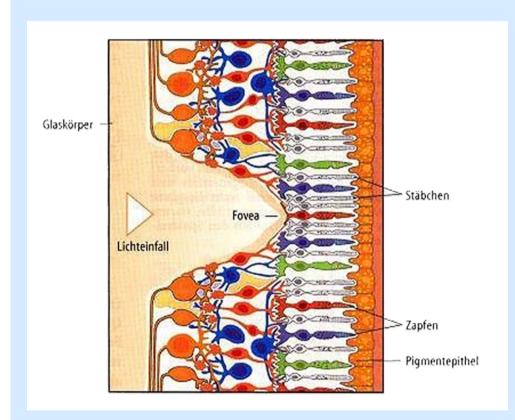
OEM spectrometer

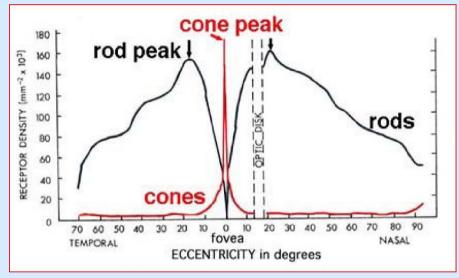

- Models for UV to NIR
- Focal lengths
 20mm to 140 mm
- Wavelength ranges
 190 nm to 1050 nm (Si)
 900 nm to 2700 nm (InGaAs)



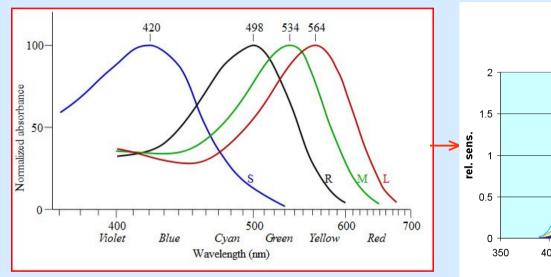
Examples for color and brightness measurement of light sources


- Part of the quality control in production of light sources
- Agreement of colors of different parts, e.g. of a luminaire or a video wall
- Impact on special processes, e.g. plant growing in a green house, optical hazard on human skin and eye or aging of cultural heritage objects by radiation
- Creation of a desired color impression, e.g. of a movie in cinema or TV
- Security aspects, e.g. in road lighting


Construction of human eye

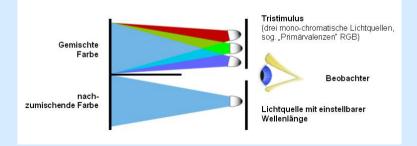


System of human retina


Cones: Color vision

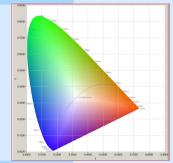
Rods: Brightness vision

1. Introduction


Technical simulation of human vision

Spectral sensitivities of different "sensors" of the human retina

Color matching functions (CMF), $V(\lambda)$


Resulting color measuring quantities

3 types of cones -> Complete measuring values - 3 dimensional

XYZ direct result of weighting of spectrum with CMFs

Different color spaces: xyY, L*a*b*, Lch, ...

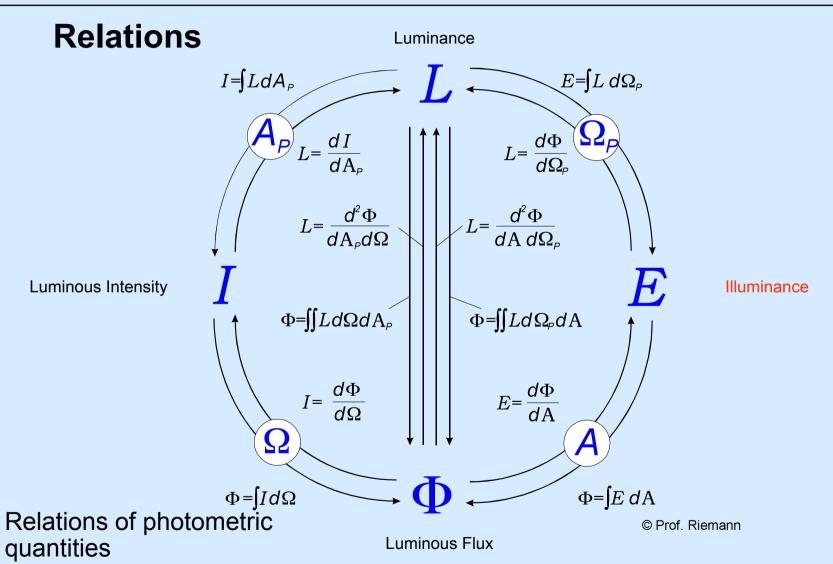
RGB related to primary colors

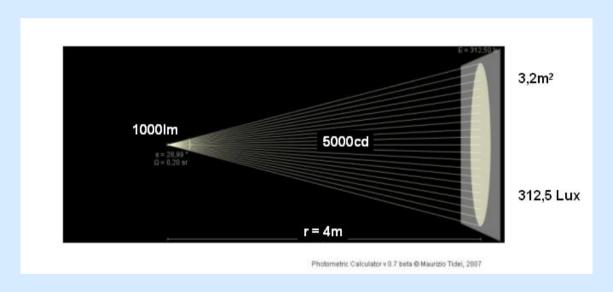
Reduced to 2 dimensions – only chromaticity

e.g. xy, u'v',
$$\lambda_{dom}$$
 PE

Reduced to one dimension – limited information

Correlated Color Temperature (CCT) – near Planckian locus


Brightness based on $\bar{y}_{2^{\circ}}$ (= V(λ))


Overview of brightness definitions

Application	Measuring object	Measuring geometry	Photometr./ Radiometric quantity	Unit
	All around radiating sources like incandescent lamps or LEDs (full space or half space)		Luminous Flux Radiant Flux	lm W
	Point like sources such as single LEDs or lamps with reflector		Luminous Intensity Radiant Intensity	cd W/ sr
	Homogeniously radiating areas such as displays and video screens, but also segments of alphanumeric displays	field of view	Luminance Radiance	$\frac{W}{sr*m^2}$
	Illuminated areas such as working tables	Cosine diffusor	Illuminance Irradiance	lx

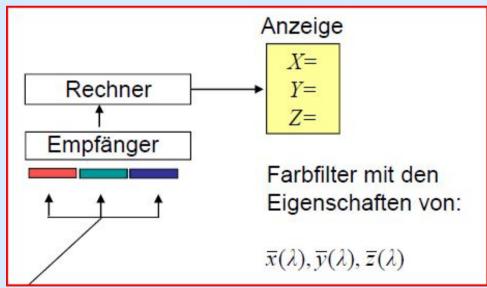
Relations between photometric quantities

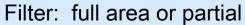
Animation

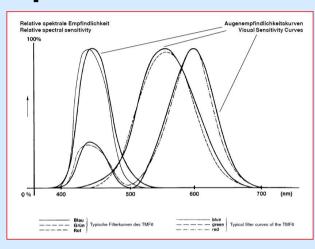
Source: http://www.stromsparlampen.eu/fotometrie_applet.html

Tristimulus – 3 channels for the 3 CMFs

Filter device (Photometer/ Tristimulus meter)


Spectral – much more channels, e.g. 400


Spectroradiometer



Tristimulus technique

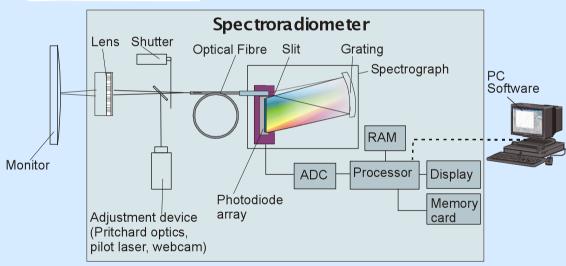
K-10 (Klein)

PM 5639 (DK Technologies)

CA-210 (Minolta)

Hubble (X-rite)

TMF 6 (Thoma)


329801/21 (Yokogawa)

Spyder 2 Pro (Datacolor)

Spectral technique

Mathematical realization of CMFs

> Matching error $f_1 = 0$

CS-200, CS-2000 (Minolta)

PR 655, PR 670, PR 705

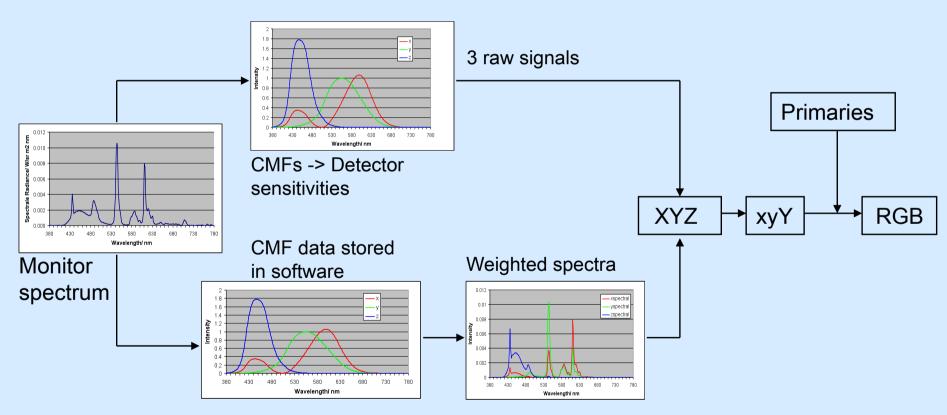
(Photo Research)

CAS 140 (Instrument Systems)

OL 770 (Optronics Laboratories)

SR 3 (Topcon)

Eye One Pro (X-rite)


specbos 1211 (JETI)

LXChroma (IBA Dosimetry GmbH)

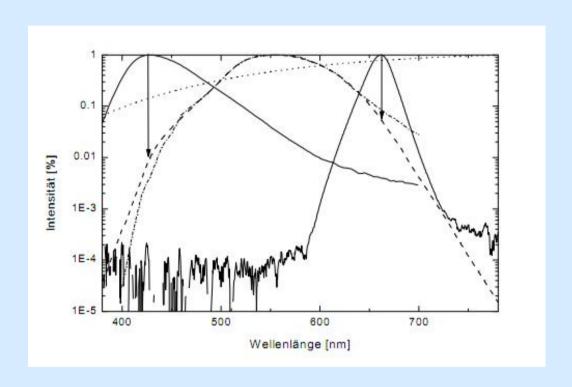
Principles of color measurement

Tristimulus

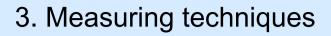
Tristimulus meter versus Spectroradiometer

	Photometer/ Tristimulus meter	Spectroradiometer
Principle	Realize the V(λ) and Color Matching Functions (CMF) by hardware (filters)	Measurement of full radiometric spectrum + Numerical integration
Advantages	 Fast measurement High sensitivity Quite stable responsivity Easy set up, easy to use Straightforward number of influences to measuring uncertainty More economic 	 No V(λ)/ CMF adaption error f₁ Spectral data available -> extended calculation possibilities, e.g. of Color Rendering Index or spectral weighted data
Disadvan- tages	 V(λ) adaption error f1 therefore adaption to individual spectrum necessary No spectral information 	 No real time mode More influences to measuring uncertainty Wavelength/ sensitivity stability/ straylight More expensive

OliNo Oct. 26, 2011

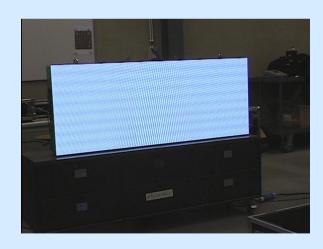

Luminance measurement on different monitors

Monitor	Technology	CS-2000 (Spectroradio- meter)	PR 650 (Spectroradio- meter)	specbos 1201 (Spectroradio- meter)	TMF 6 (Tristimulus)
Sony LMD 2451	LCD/ LED	100.1	98.7	100.3	90.4
Barco CVM 3501	CRT	88.6	85.0	88.0	85.0
VTS TFT 20W	LCD/ CCFL	95.4	94.2	95.8	68.4
Tamuz QCM 137W	LCD/ CCFL	126.8	125.7	128.3	90.0


- Values in cd/m²
- TMF 6 calibrated for CRT monitor
- Spectra specific matrix correction is necessary to obtain small measuring uncertainty

Problem of Tristimulus measurements

Effect of CMF matching error for blue and red LED spectra

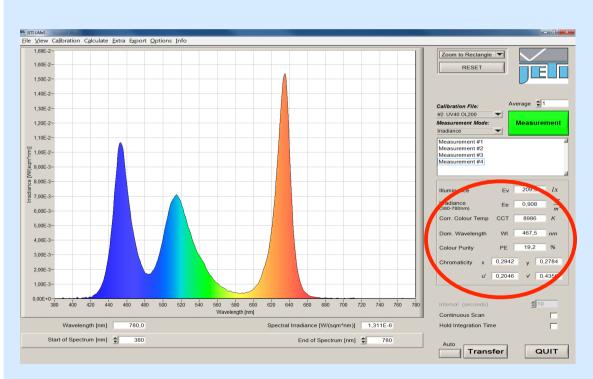


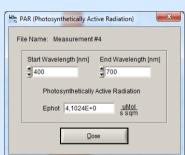
Connection between both techniques

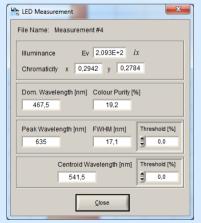
Profiling of filter devices

Simple: Photometric correction

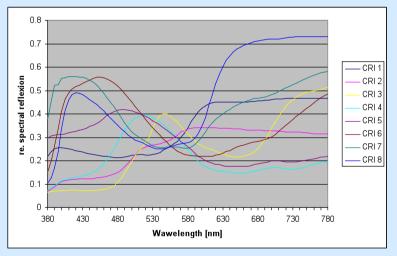
$$CCF = rac{L_{Spektralradiometer}}{L_{LMK}} = rac{\int L_{e\lambda} \cdot V(\lambda) d\lambda}{L_{LMK}}$$




Valid for more spectra: 4-color-correction, Multicolor-correction

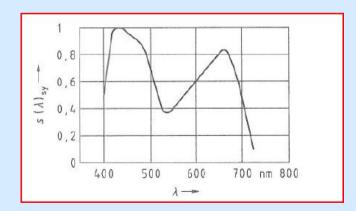


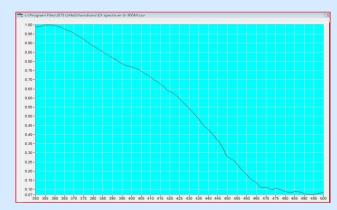
Flexibility of spectral measurements Measuring values



Flexibility of spectral measurements Color Rendering Index CRI

- 14 CIE test color samples (virtual, definition of spectral reflexion)
- Calculation of colorimetric values with reference illuminant and light source to be tested
- Calculation of color differences for each test sample
- Relating to ideal rendering of 100
- Averaging sample 1 ... 8 = R_a

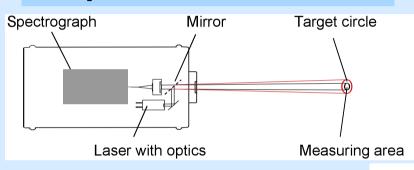

- Significant problem of classical CRI calculation with LED sources
- > CQS



Flexibility of spectral measurements Action spectra

- Effect of optical radiation is often wavelength dependent
- Modeling by Weighting (action) spectra
- Classical examples: V(λ), CIE 1931 standard observer
- Maximum of action spectra is mostly = 1 (100 %)

Efficiency of Photo synthesis

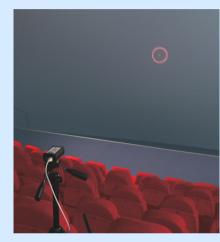


Charging efficiency of photochrome material for safety signs in airplanes

Measuring principles

Spot measurement

Luminance

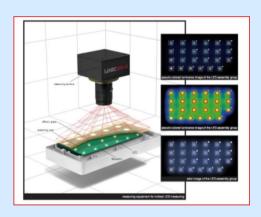

Luminous intensity

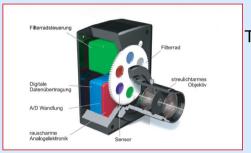
Illuminance

Photometrically, tristimulus or spectral based

For: Luminance, Illuminance, Luminous intensity

JETI specbos1201




Minolta CS-200

Measuring principles

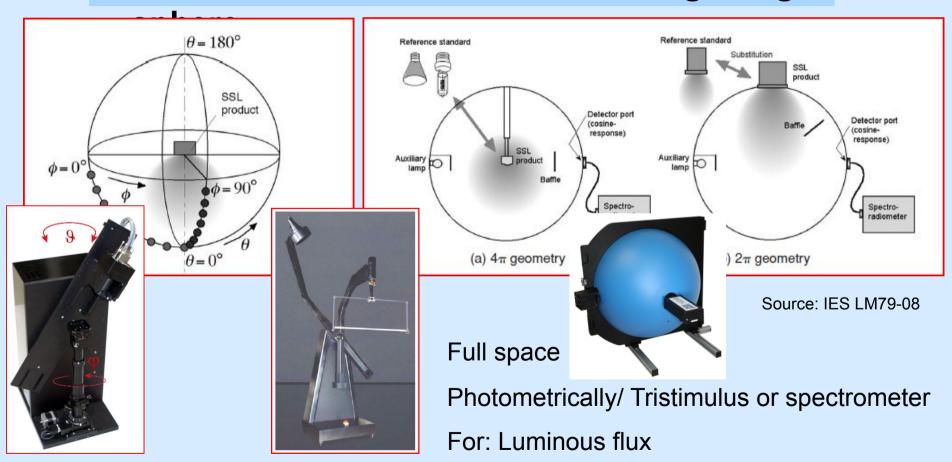
Video photometer

TechnoTeam LMK98-4 color

Space resolved

Photometrically or Tristimulus based

For: Luminance, Luminous intensity


Radiant Imaging ProMetric

Measuring principles

Goniometer

Integrating

General peculiarities of LED measurement

- small sources, often radiation only in one half sphere
- sometimes low bandwidth spectra
- Color characteristics may be angle dependent

List of selected commercial spot meters

Both principles: tristimulus and spectral resolving

Konica Minolta - CA-210, CA-310, CS-200, CS-2000

X-Rite – Hubble, ColorMunki, Eye one, Eye one pro, Chroma 5

Klein - K-10

DK Technologies – PM 5639

Datacolor - Spyder 2, Spyder 3

Photo Research -PR-655, PR-670, PR-680, PR-705/715

Gooch&Housego – OL 770VIS-DMS

Instrument Systems – CAS140CT, MAS 40

Sencore - ColorPro

Ultra Stereo Labs, inc - PCA100

Just Normlicht – GLoptic mini, GLoptic profi

IBA - LXchroma

Majantys – Probe4Light

Gamma Scientific – GS-1280 RadOMAcam

Opsira – spec'3, SPR'3

Ocean Optics – 4000, Jaz

OrbOptronix – SP-75

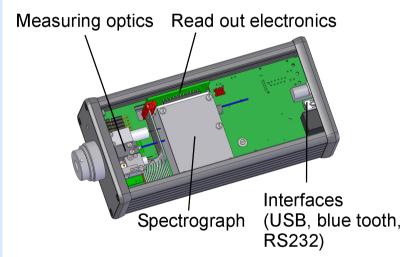
Gretag McBeth - spectrolino

International Light – ILT 950

JETI – specbos 1201, specbos 1211

.

Selected data of often used (monitor) measuring instruments


Tristimulus	K-10	PM 5639	CA 210	Hubble
Manufacturer	Klein	DK Technologies	Konica Minolta	X-rite
Kind of measurement	distance, contact	distance	contact	distance
xy accuracy @ 40 cd/m²	±0.002	±0.002 on white	±0.005 on white	±0.003
Remark			table instrument	target finder
Price	~ EUR 9 000	~ EUR 9 000	~ EUR 8 000	~ EUR 4 200
Spectral	CS-2000	CS-200	specbos 1211	Eye one pro
Manufacturer	Konica Minolta	Konica Minolta	JETI GmbH	X-rite
Kind of measurement	distance	distance	distance	contact
Bandwidth	≤ 5 nm	10 nm	4.5 nm	10 nm
xy accuracy @ 40 cd/m²	x: ±0.0015, y: ±0.001	±0.003	±0.002 @ 2856 K	±0.002
Remark	1°, 0.2°, 0.1°	1°, 0.2°, 0.1°, battery	target finder	also reflectance
Price	~ EUR 24 000	~ EUR 13 000	~ EUR 7 500	~ EUR 1 000

Example of a spectral measuring device

specbos 1211

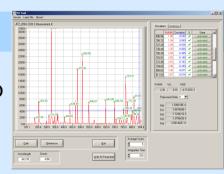
specbos 1211

- Luminance and illuminance mode, optionally: luminous flux and intensity mode
- Automatic detection of accessory
- Luminance mode: Fixed measuring optics measuring diameter is increasing with increasing distance, Measuring area is marked by a red circle
- Illuminance mode: diffusor
- Spectrometer: imaging grating and high sensitive detector array (back thinned CCD)

specbos 1211

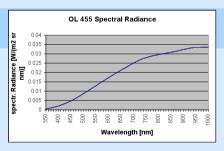
Operation with

- PC-Software (e.g. with Netbook, flexible with Bluetooth)
- Radiometric DLL (e.g. JETI Radio.dll)
- Firmware commands (e.g. *meas:chromxy)
- Virtual Instruments (VI for LabView)


specbos 1211 vs. specbos 1201

	specbos 1211	specbos 1201
Wavelength	350 (250) 1000 nm	380 780 nm
Optical resolution (FWHM)	< 4.5 nm	5 nm
Measuring range luminance (Illum. A)	0.2 2 500 cd/m² (higher values with optional filter)	2 70 000 cd/m ²
Measuring range illuminance (Illum. A)	2 10 000 lx (higher values with optional more dense diffusor)	20 200 000 lx
Measuring time @ gray LED monitor	approx. 0.3 s at 100 cd/m ² approx. 2 s at 5 cd/m ²	approx. 2.5 s at 100 cd/m ² approx. 30 s at 5 cd/m ²
Interfaces	USB, Bluetooth, RS 232	USB
Software	Radiometric software LiMeS Monitor software MoDiCal	Radiometric software LiMeS
Power supply	USB; battery; 9V-power supply	USB
Weight	450 g	350 g
Dimensions	180 mm x 82 mm x 53 mm	140 mm x 60 mm x 34 mm

Calibration of a spectroradiometer for LED measurement


Wavelength

HgAr low pressure gas discharge lamp

Spectral sensitivity

Incandescent lamp standard

Absolute calibration

Green LED standard

What "precision" of measuring results can be achieved?

Measuring precision?

Tolerance?

Measuring error?

Reproducibility?

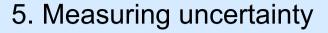
Uncertainty calculation

Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results (GUM)

 List all contributions to uncertainty and determining a mathematical formula combining them

$$cf(\lambda) = \frac{Rohd_{Kai}}{\frac{Rohd_{2}}{Rohd_{1}} \cdot Le_{\text{Re fhorm}} \cdot s_{\text{Re fhorm}}(\lambda) \cdot t_{\text{int}}} \cdot (1-k)$$
 Model

- Determination of type (evaluation by statistical methods/ other means)
- Listing of value, relative uncertainty, DOF and sensitivity coefficient for each contribution
- Calculation of combined uncertainty using the "root-sum-of-squares"
- Calculation of extended uncertainty (mainly extension factor 2)

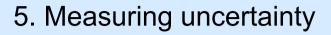


Budget for calibration uncertainty

Quantity	Symbol	Value	Relative uncertainty	Degreee of freedom	Туре	Rel. Sensitivity coefficient	Contribution to uncertainty
distance	d _m	500 mm	1.36e-4	30.7	В	2cf(λ)/d _m	= f(λ)
Maximum spectral irradiance	E _{emax}	range	8.65e-3	8	A	-cf(λ)/E _{0max}	= f(λ)
Integration time	t _{int}	500 ms	5.77e-6	80	В	-cf(λ)/t _{int}	= f(λ)
etc.							

Selected contributions to the uncertainty of a spectroradiometer

Example Luminance specbos 1201: 1000 cd/m² +/- 44 cd/m² (k=2)



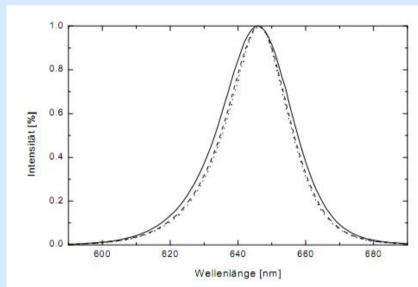
What "precision" of measuring results can be achieved?

Specification only for calibration status -> defined spectrum

Measuring ranges and accuracies Measuring range luminance 0.1 2500 cd/m² (higher values with optional filter) Measuring range illuminance 2 10 000 lx Luminance accuracy ± 2 % (@ 1 000 cd/m² and 2856 K)			
Luminance repeatability Chromaticity accuracy Color repeatability CCT repeatability Luminance decardey ± 1 % ± 0.002 x, y (@ 2856 K) ± 0.0005 x, y ± 20 K (@ 2856 K)		Accuracy: Chromaticity (Standard light source A)*1	x,y:±0.003 (0.003 to 0.005 cd/m²) x,y:±0.002 (0.005 to 0.05 cd/m²) x:±0.0015 y:±0.001 (0.05 cd/m² or more)
		Repeatability: Luminance (2σ) (Standard light source A)*2	0.4% (0.003 to 0.05 cd/m²) 0.3% (0.05 to 0.1 cd/m²) 0.15% (0.1 to 5,000 cd/m²)

Real measuring situation -> additional influences

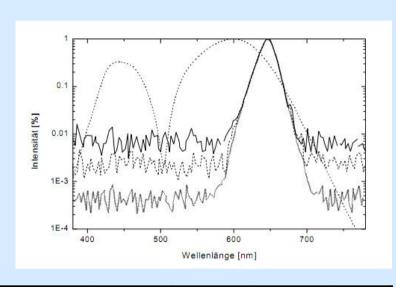
Effect of wavelength error

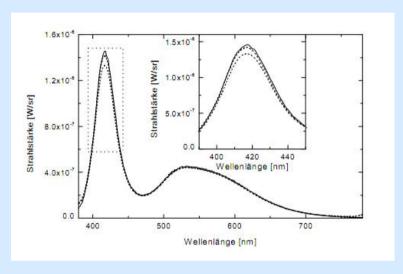

	Correct values		Spectral shift by + 1 nm		Differences	
	Х	у	x	у	Δx	Δy
R	0,7005	0,2977	0,7016	0,2965	0,0011	-0,0012
G	0,1615	0,6572	0,1661	0,6637	0,0046	0,0065
В	0,1509	0,0370	0,1499	0,0387	-0,0010	0,0017
W	0,3770	0,3509	0,3787	0,3512	0,0017	0,0003
RGB	0,2241	0,2324	0,2230	0,2366	-0,0011	0,0042

spectra: RGBW power LED

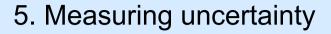
5. Measuring uncertainty

Effect of bandwidth (optical resolution)

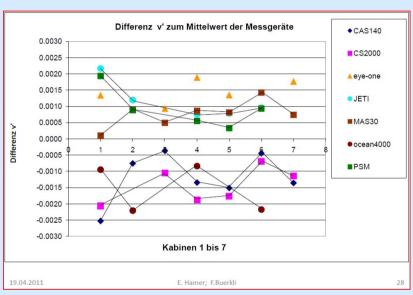

Band pass [nm]	λ _{dom} [nm]	λ _{centroid} [nm]	FWHM [nm]
0.5	634.18	644.71	20.75
1	634.16	644.59	20.8
2	634.13	644.62	20.95
5	633.91	644.56	21.82
10	633.26	644.44	24.49


Source: Handbuch der LED-Messtechnik, Instrument Systems Munich

5. Measuring uncertainty


Effect of

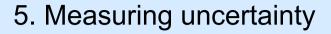

Dynamics	X	у	λ _{dom} [nm]	PE [%]
1e2	0.675	0.282	648.1	87
1e2.5	0.701	0.286	637.0	96
1e3.5	0.714	0.287	634.3	100


Stray light	X	Δχ	у	Δy
solid	0.2894	-	0.3041	-
dot 1	0.2903	0.0009	0.3065	0.0024
dot 2	0.2915	0.0021	0.3098	0.0058

FOGRA test (measurement of viewing cabinets)

Differences in u'v' to mean value of 7 cabinets

Comparability of different instruments


Possible reasons for differences in readings can be (in the following order):

- 1. Differences in device parameters (optical resolution, digital resolution, wavelength precision, stray light, dynamics, ...)
- 2. Individual status of calibration (wavelength, sensitivity)
- 3. Individual measuring errors (ambient light, adjustment, drift of sample, temperature, ...)

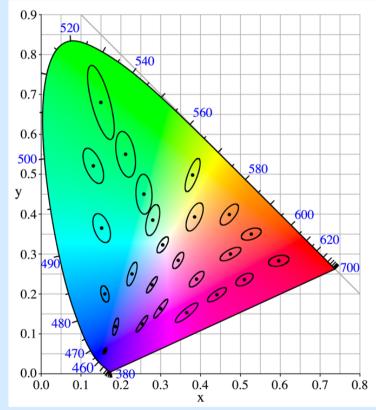
specbos 1211 – Comparability with CS 2000 (for arbitrary spectra)

- Deviation xy up to 0.002
- therefore differences in CCT up to 150 K
- Differences in L_v in the range of 1 ... 2 %
- Caused by differences in
 - Wavelength fit
 - Level calibration
 - Individual parameters (stray light, non linearity, bandwidth ...)

What instrument to use?

Application	Instrument
Comparison measurements of sources with equal spectra	filter instrument
Absolute measurements of sources with same spectra	filter instrument, profiled by a spectroradiometer
Absolute measurements of sources with arbitrary spectra	spectroradiometer
Measurement of values except xyY and related quantities	spectroradiometer


Which color differences can be distinguished?



5. Measuring uncertainty

Which color difference Δx , Δy can be distinguished?

McAdam Ellipses

McAdam-Ellipses (3-fold magnified)

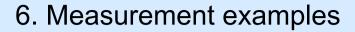
McAdam-Ellipses (10-fold magnified)

Which color difference Δx , Δy can be distinguished?

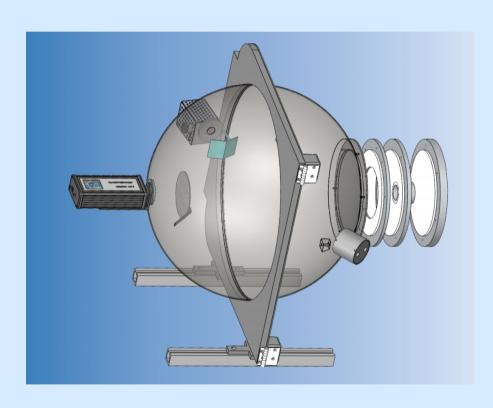
- dependent from location in color diagram (McAdam Ellipses) and of brightness (and of individual observer)
- average value for monitor (setting D 65, 80 cd/m²): $\Delta E \sim 2 \dots 3$
- $\Delta E = \operatorname{sqrt} (\Delta L^* + \Delta a^* + \Delta b^*)$
- roughly determined value for Δx , Δy : +/- 0.004 ... 0.006

JETI specbos series

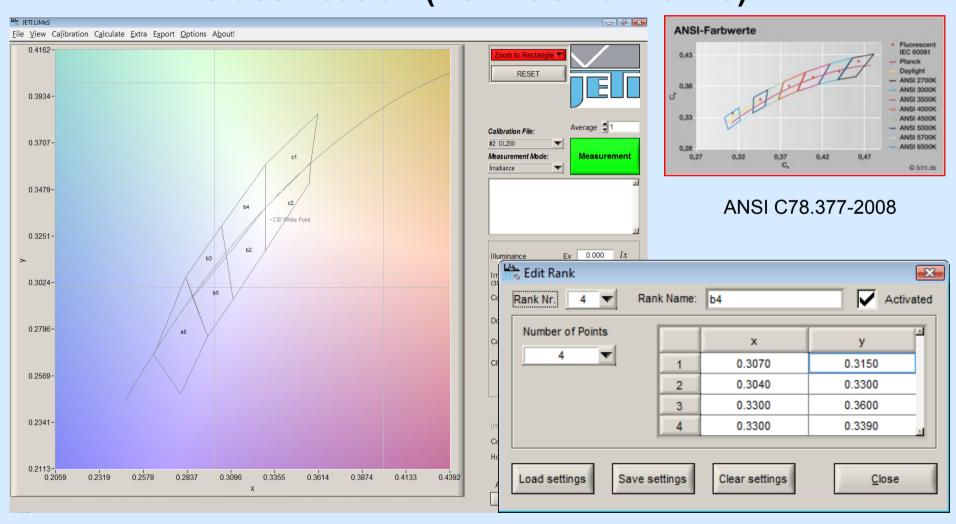
specbos 1201 focus

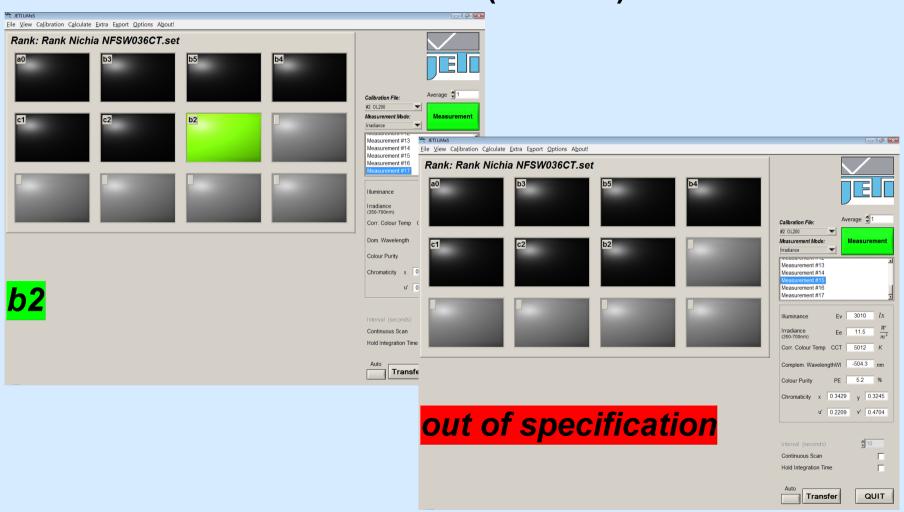

specbos 1301/ 1311 – Luminous flux

specbos 1201 flash

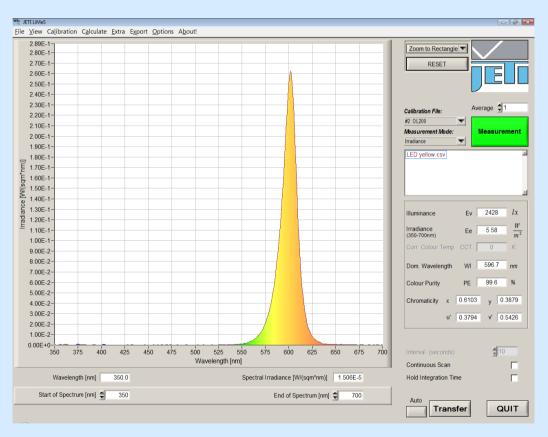


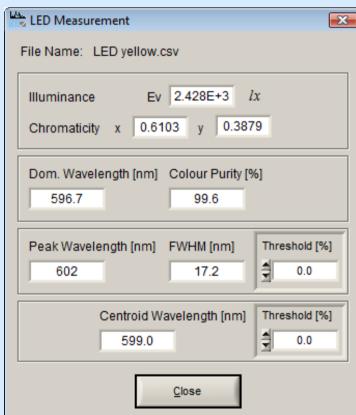
specbos 1401 – CIE 127 averaged intensity


Example: Flux measurement of LED illuminaires



Classification (Definition of Ranks)




Classification (Results)

LED Values

Light measuring of road lighting

Replacement of Discharge lamps by LED technology

Typical measuring tasks:

Horizontal illuminance

max. 200 mm above

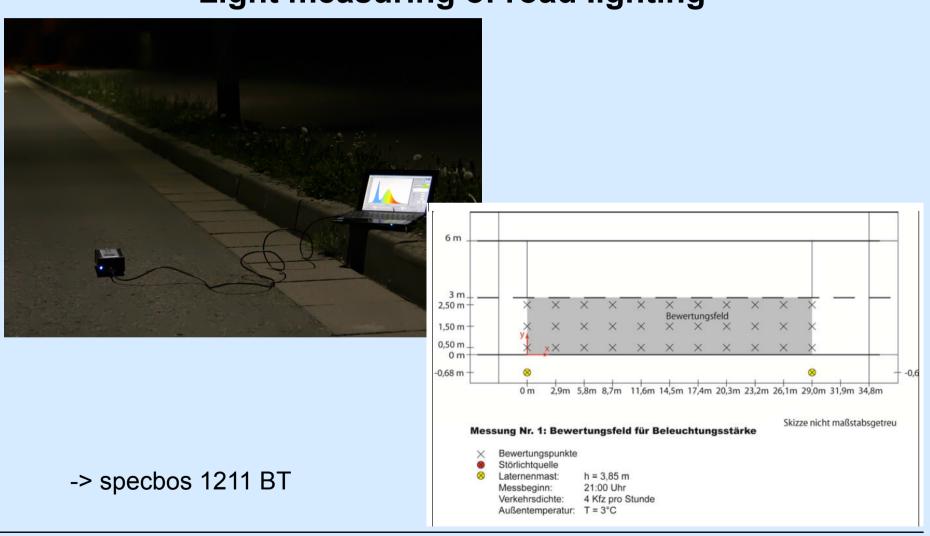
ground

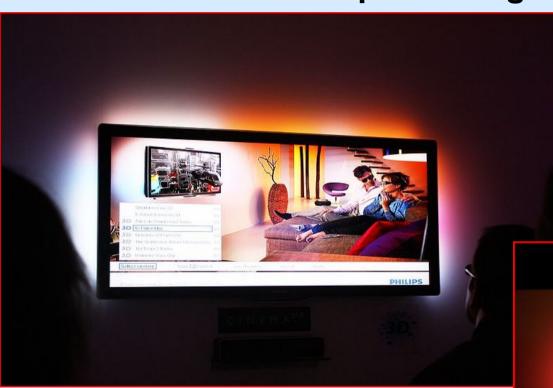
Luminance of road surface

angle 89° to normal of

road

Instrumentsinance_distributeesamera, e.g. LMK color of Technoteam Spot meter, e.g. specbos 1211 of JETI



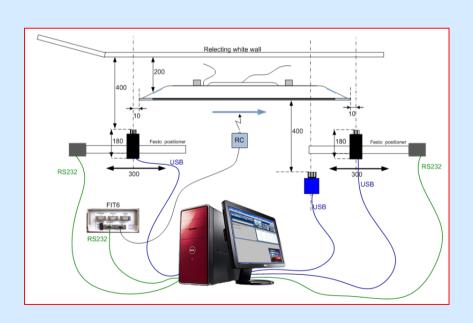


Light measuring of road lighting

Philips Ambilight

Content depending LED backward illumination

More relaxed TV consumption


Task: Adjustment of LED driver settings during production

Measurement of Philips Ambilight

- xyY measurement of primaries
- Matrix calculation for LED driver
- Check of primaries and white spectrum

Specification:

- max. 0.5 s per measurement
- moveable -> small dimensions
- continuous operation in production -> robust
- no electromagnetic interference (special EMC test)
- 100% relyable interface (first test with USB, later RS 232 version developed)

Conclusions

- Spectral measurements are prefered for spot measurements
- Photometric and Tristimulus measurements are used for space resolved measurements
- Goniometric measurements are done photometrically, more and more need for spectral measurements
- Photometers and Tristimulus meters can be profiled by a spectroradiometer
- Large number of color measuring instruments for light sources on the market (approx. 40 ... 50 spot meters)
- Special care is necessary to measure with uncertainty u(Y) < 5 % and u(x,y) < 0.003

7. Conclusions

Thank you for your interest.

Contact: steffen.goerlich@jeti.com